Derived Category in Representation of Groups

William Wong

City University

AFG RepNet Summer School
Sabhal Mor Ostaig, Isle of Skye
19 June 2015

Notations and Aims

- \mathbf{R} is a (Noetherian) ring. All R-modules are left modules.
- M is an \mathbf{R}-module, an object of \mathbf{R}-Mod.
- Chain complex might means cochain complex - they are the same anyway.
- Tensor product of two left $k G$-modules: Tensor as vector space equipped with diagonal G-action.

Notations and Aims

- \mathbf{R} is a (Noetherian) ring. All R-modules are left modules.
- M is an \mathbf{R}-module, an object of \mathbf{R}-Mod.
- Chain complex might means cochain complex - they are the same anyway.
- Tensor product of two left $k G$-modules: Tensor as vector space equipped with diagonal G-action.

At the end we hope you have an idea of:

- Homotopy category and Derived category;
- Tensor products on derived category;
- Verdier quotient: Quotient triangulated category;
- Rickard's Theorem: For modules of group algebras, stable category is a triangulated quotient of derived category.

Homotopy Category

Definition 1 (Homotopy category)
The homotopy category of R-Mod, denoted $K(\mathbf{R})$ (we omit -Mod), has Object: Chain complexes of objects of R-Mod Morphism: Chain map modulo chain homotopy.

Homotopy Category

Definition 1 (Homotopy category)

The homotopy category of R-Mod, denoted $K(\mathbf{R})$ (we omit -Mod), has Object: Chain complexes of objects of R-Mod Morphism: Chain map modulo chain homotopy.

Reminder: Two maps $f, g: X_{*} \rightarrow Y_{*}$ are chain homotopic if there exist a degree 1 map h such that $f-g=d \circ h+h \circ d$.

$$
\begin{aligned}
& X^{*}: \longrightarrow X^{-1} \xrightarrow{d^{-1}} X^{0} \xrightarrow{d_{0}} X^{1} \longrightarrow
\end{aligned}
$$

$$
\begin{aligned}
& Y^{*}: \longrightarrow Y^{-1} \xrightarrow{d^{-1}} Y^{0} \xrightarrow{d^{0}} Y^{1} \longrightarrow
\end{aligned}
$$

About Our Objects: Chain complexes

A chain complex of \mathbf{R}-modules, X^{*} is

$$
X^{*}: \cdots \rightarrow X^{-1} \xrightarrow{d^{-1}} X^{0} \xrightarrow{d^{0}} X^{1} \rightarrow \ldots
$$

- Each X^{i} is a \mathbf{R}-module, each d^{i} is a module map.
- $d^{i+1} \circ d^{i}=0$, or simply $d \circ d=0$.

About Our Objects: Chain complexes

A chain complex of \mathbf{R}-modules, X^{*} is

$$
X^{*}: \cdots \rightarrow X^{-1} \xrightarrow{d^{-1}} X^{0} \xrightarrow{d^{0}} X^{1} \rightarrow \ldots
$$

- Each X^{i} is a \mathbf{R}-module, each d^{i} is a module map.
- $d^{i+1} \circ d^{i}=0$, or simply $d \circ d=0$.

There is a full embedding of \mathbf{R}-Mod to $K(\mathbf{R})$:
An object $M \in \mathbf{R}$-Mod is regarded as chain complex

$$
\ldots \rightarrow 0 \rightarrow M \rightarrow 0 \rightarrow \ldots
$$

where M is in the zeroth position.
We shall be using this embedding from now on. That is, we regard an object in \mathbf{R}-Mod as object in $K(\mathbf{R})$ by this embedding. Sometimes we write X in place of X^{\bullet}.

Projective Resolution

Let M be a \mathbf{R}-module. A projective resolution of M, P_{M} is a chain complex of R-projective modules

$$
\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow 0
$$

such that each P_{i} is projective \mathbf{R}-module and $H_{n}\left(P_{M}\right)=M$ when $n=0$, zero otherwise.

Projective Resolution

Let M be a \mathbf{R}-module. A projective resolution of M, P_{M} is a chain complex of R-projective modules

$$
\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow 0
$$

such that each P_{i} is projective \mathbf{R}-module and $H_{n}\left(P_{M}\right)=M$ when $n=0$, zero otherwise. Or we say

$$
\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

is exact.

Projective Resolution

Let M be a \mathbf{R}-module. A projective resolution of M, P_{M} is a chain complex of R-projective modules

$$
\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow 0
$$

such that each P_{i} is projective \mathbf{R}-module and $H_{n}\left(P_{M}\right)=M$ when $n=0$, zero otherwise. Or we say

$$
\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0
$$

is exact.

1. You can also have projective resolution to a chain complex of R-modules M^{*}.
2. Existence can be guaranteed, uniqueness up to homotopy equivalence.
3. Dual construction of injective resolution.

Quasi-isomorphism

Two Chain complexes X and Y are quasi-isomorphic if there is a chain map f from X to Y such that f^{*} is an isomorphism of their homology groups.
e.g. In $K(\mathbf{R})$, an \mathbf{R}-module M (as chain complex) and its projective resolution P_{M} is quasi-isomorphic.

$$
\begin{array}{rllllll}
P_{M}: & \ldots & \rightarrow P_{M}^{-1} & \rightarrow & P_{M}^{0} & \rightarrow & 0
\end{array} \rightarrow \ldots
$$

Quasi-isomorphism

Two Chain complexes X and Y are quasi-isomorphic if there is a chain map f from X to Y such that f^{*} is an isomorphism of their homology groups.
e.g. In $K(\mathbf{R})$, an \mathbf{R}-module M (as chain complex) and its projective resolution P_{M} is quasi-isomorphic.

$$
\left.\begin{array}{rlllclll}
P_{M}: & \ldots \rightarrow P_{M}^{-1} & \rightarrow & P_{M}^{0} & \rightarrow & 0 & \rightarrow \ldots \\
M: & \ldots & \rightarrow & 0 & \rightarrow & \downarrow & \rightarrow & 0
\end{array}\right) \ldots
$$

Note: Maps between two quasi-isomorphic chain complexes are not necessary invertible. See the above example.

Quasi-isomorphism

Two Chain complexes X and Y are quasi-isomorphic if there is a chain map f from X to Y such that f^{*} is an isomorphism of their homology groups.
e.g. In $K(\mathbf{R})$, an \mathbf{R}-module M (as chain complex) and its projective resolution P_{M} is quasi-isomorphic.

$$
\begin{array}{rlllclll}
P_{M}: & \ldots \rightarrow & P_{M}^{-1} & \rightarrow & P_{M}^{0} & \rightarrow & 0 & \rightarrow \ldots \\
M: & \ldots & \rightarrow & 0 & \rightarrow & \downarrow & \rightarrow & 0
\end{array} \rightarrow \ldots
$$

Note: Maps between two quasi-isomorphic chain complexes are not necessary invertible. See the above example.
Localise: Add formal inverse (add f^{-1} for q.i. f) \Rightarrow Derived category.
e.g. 'Rooftops'

Quasi-isomorphism

Two Chain complexes X and Y are quasi-isomorphic if there is a chain map f from X to Y such that f^{*} is an isomorphism of their homology groups.
e.g. In $K(\mathbf{R})$, an \mathbf{R}-module M (as chain complex) and its projective resolution P_{M} is quasi-isomorphic.

$$
\begin{array}{rlllclll}
P_{M}: & \ldots \rightarrow & P_{M}^{-1} & \rightarrow & P_{M}^{0} & \rightarrow & 0 & \rightarrow \ldots \\
M: & \ldots & \rightarrow & 0 & \rightarrow & \downarrow & \rightarrow & 0
\end{array} \rightarrow \ldots
$$

Note: Maps between two quasi-isomorphic chain complexes are not necessary invertible. See the above example.
Localise: Add formal inverse (add f^{-1} for q.i. f) \Rightarrow Derived category.
e.g. 'Rooftops'

Note: Homotopy equivalences are examples of quasi-isomorphisms.

Derived Category

Definition 2 (Derived category)

The derived category of \mathbf{R}-Mod, denoted $D(\mathbf{R})$, has
Object: Chain complexes of objects of \mathbf{R}-Mod Morphism: Using morphism in $K(\mathbf{R})$, adding formal inverse of quasi-isomorphism (and its composition).

Derived Category

Definition 2 (Derived category)

The derived category of \mathbf{R}-Mod, denoted $D(\mathbf{R})$, has
Object: Chain complexes of objects of \mathbf{R}-Mod
Morphism: Using morphism in $K(\mathbf{R})$, adding formal inverse of quasi-isomorphism (and its composition).

It is possible to define derived category directly without introducing homotopy category - but it is more complex than you might think. Technical: We done most of the calculation in $D(\mathbf{R})$ using projective resolution. Which practically is working in $K(\mathbf{R})$.

Remark

$K(\mathbf{R})$ and $D(\mathbf{R})$ is a triangulated category. Shift is the suspension Σ; Mapping cones construct standard triangles. - see next page.

Operations On $K(\mathbf{R})$ and $D(\mathbf{R})$

- Shift functor (denoted [1]): Moving chain complex 1 space left

$$
X[1]=\ldots \xrightarrow{-d^{-1}} X^{0} \xrightarrow{-d^{0}} \xrightarrow{X^{1}} \xrightarrow{-d^{1}} X^{2} \xrightarrow{-d^{2}} \ldots
$$

where d is negated and the underline term is the zeroth chain.

Operations On $K(\mathbf{R})$ and $D(\mathbf{R})$

- Shift functor (denoted [1]): Moving chain complex 1 space left

$$
X[1]=\ldots \xrightarrow{-d^{-1}} X^{0} \xrightarrow{-d^{0}} \xrightarrow{X^{1}} \xrightarrow{-d^{1}} X^{2} \xrightarrow{-d^{2}} \ldots
$$

where d is negated and the underline term is the zeroth chain.

- Mapping cone: For $X \xrightarrow{f} Y$, the mapping cone of f is a chain complex

Cone (f) with terms $X[1] \oplus Y$ and differential $\left(\begin{array}{cc}d_{X[1]} & 0 \\ f[1] & d_{Y}\end{array}\right)$

Operations On $K(\mathbf{R})$ and $D(\mathbf{R})$

- Shift functor (denoted [1]): Moving chain complex 1 space left

$$
X[1]=\ldots \xrightarrow{-d^{-1}} X^{0} \xrightarrow{-d^{0}} \xrightarrow{X^{1}} \xrightarrow{-d^{1}} X^{2} \xrightarrow{-d^{2}} \ldots
$$

where d is negated and the underline term is the zeroth chain.

- Mapping cone: For $X \xrightarrow{f} Y$, the mapping cone of f is a chain complex

$$
\operatorname{Cone}(f) \text { with terms } X[1] \oplus Y \text { and differential }\left(\begin{array}{cc}
d_{X[1]} & 0 \\
f[1] & d_{Y}
\end{array}\right)
$$

- Hom operation

$$
\left(\operatorname{Hom}_{D(\mathcal{A})}(X, Y)\right)^{i}=\Pi_{j} \operatorname{Hom}_{\mathcal{A}}\left(X^{j}, Y^{j+i}\right)
$$

with differential $(d f)(v)=d(f(v))-(-1)^{|f|} f(d(v))$.
We do not need this immediately.

Operations On $K(\mathbf{R})$ and $D(\mathbf{R})$

- Shift functor (denoted [1]): Moving chain complex 1 space left

$$
X[1]=\ldots \xrightarrow{-d^{-1}} X^{0} \xrightarrow{-d^{0}} \xrightarrow{X^{1}} \xrightarrow{-d^{1}} X^{2} \xrightarrow{-d^{2}} \ldots
$$

where d is negated and the underline term is the zeroth chain.

- Mapping cone: For $X \xrightarrow{f} Y$, the mapping cone of f is a chain complex

$$
\operatorname{Cone}(f) \text { with terms } X[1] \oplus Y \text { and differential }\left(\begin{array}{cc}
d_{X[1]} & 0 \\
f[1] & d_{Y}
\end{array}\right)
$$

- Tensor product (on chain complexes)

$$
(X \otimes Y)^{i}=\bigoplus_{j+k=i} X^{j} \otimes Y^{k}
$$

with differential $d(a \otimes b)=d a \otimes b+(-1)^{|a|} a \otimes d b$.

Our Tensor Product on $D(k G)$

Recall we can define tensor product for two left $k G$-modules: (We can't do it for any ring \mathbf{R} except commutative ones.)
Let M, N be two left $k G$-modules with basis m_{i}, n_{j} Define $M \otimes N$ to be the vector space with basis $m_{i} \otimes n_{j}$ equipped with diagonal G-action: For $g \in G$,

$$
g \cdot(m \otimes n)=g \cdot m \otimes g . n .
$$

Note the tensor product $-\otimes N$ is exact, so quasi-isomorphism is preserved. Extend this definition the chain complex of left $k G$-modules we get a tensor product structure well-defined on $D(k G)$ - makes $D(k G)$ a symmetric monoidal (tensor) category in categorical terms. This tensor product also preserves triangles, so $D(k G)$ is a tensor triangulated category.

Quotient Categories for Triangulated Categories

Definition 3 (Thick Triangulated Subcategory)

A triangulated subcategory is a full (triangulated) subcategory $\mathcal{S} \subset \mathcal{T}$ of a triangulated category such that

1. Contains the zero object (or non-empty).
2. It is closed under suspension (shift in $K(\mathbf{R}), D(\mathbf{R})$; Heller translate in $k G$-Mod).
3. If two terms of a triangle belong to \mathcal{S} so is the third (e.g. cones). Such subcategory is thick (épaisse) if direct summands of an element in \mathcal{S} is in \mathcal{S}.

Quotient Categories for Triangulated Categories

Definition 3 (Thick Triangulated Subcategory)

A triangulated subcategory is a full (triangulated) subcategory $\mathcal{S} \subset \mathcal{T}$ of a triangulated category such that

1. Contains the zero object (or non-empty).
2. It is closed under suspension (shift in $K(\mathbf{R}), D(\mathbf{R})$; Heller translate in $k G$ - -Mod).
3. If two terms of a triangle belong to \mathcal{S} so is the third (e.g. cones). Such subcategory is thick (épaisse) if direct summands of an element in \mathcal{S} is in \mathcal{S}.

One might regard thick subcategory as subcategory for quotients. (Normal subgroups; ideals.)
The quotient category (denoted $\mathcal{T} / \mathcal{S}$ from above definition) is triangulated. This is the Verdier quotient of triangulated categories.

Verdier Quotient: $K(\mathbf{R})$ to $D(\mathbf{R})$

Example 4

Acyclic complexes of \mathbf{R}-mod (complexes with zero homology) forms a thick subcategory of $K(\mathbf{R})$.

The Verdier quotient effectively treats the object in \mathcal{S} as zero. Hence, consider these two triangles in $K(\mathbf{R})$,

we forced f to have an inverse because Cone (f) is acyclic (and identity definitely have inverse), thus effectively inverting quasi-isomorphisms.

Verdier Quotient: $D^{b}(k G) / D^{\text {per }}(k G) \cong k G$-mod

Our last job of this talk will see stable module category $k G$-mod being a quotient category of $D^{b}(k G)$.

Verdier Quotient: $D^{b}(k G) / D^{\text {per }}(k G) \cong k G$-mod

Our last job of this talk will see stable module category $k G$-mod being a quotient category of $D^{b}(k G)$.
First, we are in bounded derived category with objects having finitely-generated homology in only finitely many degrees. This does not change anything we have already discussed. Second, we restrict ourselves to $k G$-mod (self-injective algebra) with finitely generated modules so that $k G$-mod is triangulated (not true in general).

Verdier Quotient: $D^{b}(k G) / D^{\text {per }}(k G) \cong k G$-mod

Our last job of this talk will see stable module category $k G$-mod being a quotient category of $D^{b}(k G)$.
First, we are in bounded derived category with objects having finitely-generated homology in only finitely many degrees. This does not change anything we have already discussed. Second, we restrict ourselves to $k G$-mod (self-injective algebra) with finitely generated modules so that $k G$-mod is triangulated (not true in general).

Definition 5

A perfect complex of $D^{b}(k G)$ is a chain complex quasi-isomorphic to a bounded complex of finite projective $k G$-modules.

It is easy to check all perfect complexes forms a thick subcategory $D^{\text {per }}(k G)$ in $D^{b}(k G)$.

Theorem 6 (Rickard's Theorem)

The Verdier quotient $D^{b}(k G) / D^{p e r}(k G)$ is equivalent to $k G$-mod as triangulated categories.

We give a very brief sketch of proof here

1. Consider an additive functor $F^{\prime}: k G$-Mod $\rightarrow D^{b}(k G) / D^{\text {per }}(k G)$. All $k G$-projective modules are being treated as zero, since the chain of them concentrated in degree zero is a perfect complex. Thus F^{\prime} factors through to $F: k G$-Mod $\rightarrow D^{b}(k G) / D^{p e r}(k G)$.
2. Exactness of F using the pushout diagram on $k G$-modules.
3. Fullness and faithfulness of F by properties of $k G$-modules.
4. Every object X in $D^{b}(k G) / D^{\text {per }}(k G)$ is isomorphic to $F(M)$ for some module M. Done by truncating projective resolution of X and using cone.
